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Abstract. Top-quark physics plays an important rôle at hadron colliders such as the Tevatron at Fermilab
or the LHC at CERN. Given the planned precision at these colliders, precise theoretical predictions are
required. In this paper we present the complete electroweak corrections to QCD-induced top-quark pair
production in quark–antiquark annihilation. In particular we provide compact analytic expressions for the
differential partonic cross section, which will be useful for further theoretical investigations.

1 Introduction

At ongoing and upcoming collider experiments, top-quark
physics will play a central rôle. Although the top-quark was
discovered already 10 years ago, direct measurements of
its properties are still rather limited. In particular most of
the quantum numbers are only constrained from indirect
measurements such as the electroweak precision observ-
ables. In the near future the hadron colliders Tevatron
at Fermilab and LHC at CERN will provide unique pos-
sibilities for detailed measurements in the top sector. A
necessary requirement for these analyses is the precise theo-
retical understanding of reactions involving top-quarks. At
hadron colliders both single top-quark production as well as
top-quark pair production have been studied extensively
in the past. The differential cross section for top-quark
pair production is known to next-to-leading order (NLO)
accuracy in quantum chromodynamics (QCD) [1–5]. In
addition, the resummation of logarithmic enhanced con-
tributions has been studied in detail in [6–11]. Recently
also the spin correlations between top-quark and antitop-
quark were calculated at NLO in QCD [5,12]. In [13,14] the
electroweak corrections were investigated. However, for the
quark–antiquark annihilation process, only the electroweak
vertex corrections were considered – the contributions from
box diagrams were ignored. It is well known that in the high
energy region s � mW,Z the weak corrections can be en-
hanced by the presence of large logarithms (see e.g. [15,16]
and references therein) which justifies a detailed study of
all contributions. More recently the electroweak corrections
for b-quark production were re-analysed in [17,18]. In par-
ticular, it was again confirmed that the weak corrections
can lead to sizable corrections for specific observables. For a
more detailed theoretical investigation of these effects, it is
useful to have short analytic expressions available. The aim

of this work is to recalculate the weak corrections to top-
quark pair production – including the contribtution from
box diagrams – and give compact analytic results. Note
that we do not consider here the pure photonic corrections,
which form a separate gauge-invariant subset.

The outline of the paper is as follows. In Sect. 2 we
present the calculation of the virtual electroweak correc-
tions to top-quark pair production in quark–antiquark an-
nihilation. The contributions involving box diagrams are
infrared-divergent. The singularities cancel when the vir-
tual corrections are combined with the corresponding real
corrections, which we calculate in Sect. 3. In Sect. 4 we dis-
cuss some checks we performed and give numerical results
for the total cross section.

2 Virtual corrections

In this section we present the calculation of the electroweak
corrections. We work in the ’t Hooft gauge (Rξ-gauge) with
the gauge parameters ξi set to 1. In this gauge, apart from
the physical fields, also unphysical fields contribute. In
particular we have to consider the contribution from the
fields denoted by χ, φ, which are related to the longitu-
dinal degrees of freedom of the gauge bosons. In principle
in the Rξ-gauge also ghosts need to be considered to can-
cel unphysical degrees of freedom. To the order where we
are working, the ghosts do not contribute. In addition,
given that we neglect the masses of the u, d, c, s quarks
the unphysical fields φ and χ only contribute in the ver-
tex corrections to the final gluon–top–antitop vertex. The
renormalisation is done in renormalized perturbation the-
ory. That is the bare Lagrangian L is rewritten in terms
of renormalized fields and couplings:
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Fig. 1. Sample diagrams for the virtual corrections

Fig. 2. Counterterm diagrams

L(Ψ0, A0, m0, g0)

= L(Z1/2
Ψ ΨR, Z

1/2
A AR, ZmmR, ZggR)

= L(ΨR, AR, mR, gR) + Lct(ΨR, AR, mR, gR). (1)

The contribution L(ΨR, AR, mR, gR) gives just the ordinary
Feynman rules, but with the bare couplings replaced by
the renormalized ones. Some sample diagrams are shown
in Fig. 1. The complete list of Feynman rules can be
found for example in [19]. The second contribution in (1)
Lct(ΨR, AR, mR, gR) yields the counterterms, which ren-
der the calculation ultraviolet (UV-) finite. The diagrams
needed here are shown in Fig. 2. Note that although the
electroweak corrections appear here in one-loop approxima-
tion, they are the leading-order electroweak contribution.
The interference term of the amplitude M(qq̄ → γ, Z → tt̄)
with the corresponding QCD amplitude vanishes as a con-
sequence of the specific colour structure. Terms of order
αsα are therefore absent. Thus no renormalisation of the
coupling constants is required at the order under consider-
ation here. This is different from an electroweak correction
to an electroweak amplitude, which would not be UV-finite
without coupling-constant renormalisation.Thewhole con-
tribution from the renormalisation is given by

δ|M|2 = 2(δZq + δZt)|Mqq̄→tt̄|2, (2)

where Zq, Zt denote the wave-function renormalisation
constants of the incoming light quark and the outgoing
top-quark (Zi = 1+δZi). The squared leading-order QCD
amplitude |Mqq̄→tt̄|2 in d dimensions is given by

|Mqq̄→tt̄|2 = 16π2αs
2(N2 − 1)(2 − β2(1 − z2) − 2 ε), (3)

where N is the number of colours, αs the strong coupling
constant and β the velocity of the top-quark in the partonic
centre-of-mass system:

β =

√
1 − 4

mt
2

s
(4)

(s denotes the partonic centre-of-mass energy squared).
The cosine of the scattering angle is denoted by z. The
parameter of dimensional regularisation ε is defined by

d = 4 − 2ε. (5)

For the renormalisation of the quark fields we use the on-
shell scheme. The renormalisation constants in this scheme
in terms of self-energy integrals and derivatives thereof
can be found for example in [19]. Before presenting the
results, let us add a few technical remarks. We used the
Passarino –Veltman reduction scheme [20] to reduce the
tensor integrals to scalar one-loop integrals. For the scalar
integrals we use the following convention:

X0 =
1

iπ2

∫
dd	

(2πµ)2ε

(	2 − m2
1 + iε) . . .

. (6)

For the UV-divergent integrals we define the finite part
for the one-point integrals A0 and the two-point integrals
B0 through

A0(m2) = m2∆ + A0(m2),

B0(p2, m2
1, m

2
2) = ∆ + B0(p2, m2

1, m
2
2), (7)

with

∆ = (4π)εΓ (1 + ε)
1
ε

=
1
ε

− γ + ln(4π) + O(ε). (8)

The vertex corrections do not contain infrared or mass
singularities (IR singularities). They contain only UV sin-
gularities, which are removed by the aforementioned renor-
malisation. On the other hand the contribution involving
box diagrams are UV-finite but contain IR singularities. In
order to regularize the IR singularities, we use dimensional
regularisation. To simplify their determination, we express
the d-dimensional four-point scalar integrals Dd

0 in terms
of the (d+2)-dimensional four-point integrals Dd+2

0 and a
combination of three-point integrals in d dimensions. This
can be done by the following relation

Dd+2
0 = −2πDd

27 (9)

where the box integral in 6 dimensions is defined by

Dd=6(p2
1, p

2
2, p

2
3, p1 · p2, p2 · p3, p1 · p3,

m1
2, m2

2, m3
2, m4

2)[1, 	µ, 	µ	ν , . . .]

=
1

iπ2

∫
d6	

{
[1, 	µ, 	µ	ν , . . .]

(	2 − m1
2 + iε)((	 + p1)2 − m2

2 + iε)

× 1
((	 + p1 + p2)2 − m3

2 + iε)

× 1
((	 + p1 + p2 + p3)2 − m4

2 + iε)

}
(10)

and Dd
27 is the coefficient of the metric tensor gµν appear-

ing in the Passarino –Veltman decomposition [20] of the
tensor integral

Dd=6[	µ	ν ] (11)



J.H. Kühn et al.: Electroweak corrections to top-quark pair production in quark–antiquark annihilation 141

(see (F.3) in [20]), which in turn can be expressed as a linear
combination of the scalar box integral Dd

0 and scalar trian-
gle integrals Cd

0 in d dimensions. Owing to the finiteness of
the box integrals in 6 dimensions the infrared singularities
appear only in the three-point integrals.

For the presentation of the results it is convenient to
use the leading-order QCD cross section which is given by

dσBorn

dz
= σ0(2 − β2 + β2z2) (12)

with

σ0 =
1
8

πα2
s
N2 − 1

N2

β

s
. (13)

A factor 1/(4N2) from averaging over the incoming spins
and colour is included. In a first step we present the correc-
tions to the cross section from the contribution of Z boson
and W boson exchange to the light quark–gluon vertex.
The form of this vertex remains unchanged; its normalisa-
tion is shifted by a factor (1 + δF In,W+Z

D ), which leads to
a shift by

dσIn.,W+Z

dz
=

dσBorn

dz
2 Re δF In,W+Z

D , (14)

with

δF In,W+Z
D = − 1

8
α

π

(
(gq

v
2 + gq

a
2)f1(ρz) + 2gW

2f1(ρw)
)

(15)
and

f1(x) = 1 + 2
[
(1 + ln(x)) (2x + 3) (16)

− 2 (1 + x)2
(

Li2

(
1 +

1
x

)
− π2

6

)]
,

where we used the definition

ρi =
m2

i

s
. (17)

In (15), α = e2

4π denotes the electromagnetic coupling.
The Cabibbo –Kobayashi–Maskawa mixing matrix has
been set to 1. The vector- and axial-vector couplings of
neutral and charged currents are given by

gq
v =

1
2sWcW

(T q
3 − 2sW

2Qq), (18)

gq
a =

1
2sWcW

T q
3 , (19)

gW =
1

2
√

2sW
, (20)

where Qq describes the electric charge in units of the el-
ementary charge e, sW is the sine of the Weinberg angle
(sW = sin(ϑW), cW = cos(ϑW)), and T q

3 denotes the weak
isospin. For the vertex corrections to the final vertexwe split
the result into the contribution from Z boson exchange,

W boson exchange, Higgs exchange and the contributions
from the would-be Goldstone bosons including the respec-
tive counterterms:

dσFin. = dσFin.,Z+dσFin.,W +dσFin.,H+dσFin.,χ+dσFin.,φ.
(21)

Note that only the sum has a physically meaningful inter-
pretation. For the individual terms we use the following
decomposition into form factors:

dσFin., i = σ0
α

π

(
(1 − β2)

β2 F i
e(1 − z2) + F i

m(1 + z2)
)

+
dσBorn

dz
F i

B . (22)

For the different contributions we obtain

FZ
e =

(
2ρz(gt

v
2 + gt

a
2) − β2(gt

v
2 − 3gt

a
2)
)

×
(
B

3
0(1, 3) − B

1
0(3, 4)

)

+
1
2

(
(4ρ2

z − β2)(gt
v
2 + gt

a
2) − β4(gt

v
2 − 3gt

a
2)

+8ρzβ
2gt

a
2
)

sC3
0 , (23)

FZ
m = (gt

v
2 + gt

a
2)

×
[
− 1

2
+

2
s(1 − β2)

(
A0(mZ

2) − A0(mt
2)
)

−
(

3
2

+
ρz

β2

)
B

3
0(1, 3)

+
(

2 +
ρz(1 − 3β2)
β2(1 − β2)

)
B

1
0(3, 4)

− 1
2β2

(
β2(1 + β2) + 4ρzβ

2 + 2ρ2
z

)
sC3

0

]
, (24)

FZ
B =

α

2π

(
2ρz(gt

v
2 + gt

a
2) + (1 − β2)(gt

v
2 − 3gt

a
2)
)

×s
d

dp2 B1
0(3, 4)

∣∣∣∣
p2=mt

2

. (25)

The integrals are defined in the appendix. For the contri-
bution from the W boson we find

FW
e = gW

2
[(

1 + β2 + 4(ρw − ρb)
)

×
(
B

4
0(1, 3) − B

4
0(1, 2)

)

+
1
4
(
(1 + β2 + 4(ρw − ρb))2 − 4β2) sC4

0

]
, (26)

FW
m = gW

2
[
−1 +

4
s(1 − β2)

(
A0(mW

2) − A0(mb
2)
)

+
1

2β2(1 − β2)
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× (1 + 4β2 − 5β4 + 4(ρw − ρb)(1 − 3β2)
)

×B
4
0(1, 2)

− 1
2β2

(
1 + 5β2 + 4(ρw − ρb)

)
B

4
0(1, 3)

− 1
8β2

(
1 + 10β2 + 5β4

+8(ρw − ρb) + 8β2(3ρw − ρb)

+16(ρw − ρb)2
)
sC4

0

]
, (27)

FW
B = − α

2π
gW

2 (1 − β2 − 4(ρw − ρb)
)

×s
d

dp2 B4
0(1, 2)

∣∣∣∣
p2=mt

2

. (28)

The contribution from the Higgs boson is given by

FH
e = gW

2 mt
2

mW
2

[
2(β2 + ρH)

(
B

3
0(1, 3) − B

5
0(1, 2)

)

− (β2(1 − β2) − 3ρHβ2 − 2ρ2
H

)
sC5

0

]
, (29)

FH
m = gW

2 mt
2

mW
2

×
[
− 1

2
+

2
s(1 − β2)

(
A0(mH

2) − A0(mt
2)
)

+
(

1
2

− ρH

β2

)
B

3
0(1, 3) +

ρH(1 − 3β2)
β2(1 − β2)

B
5
0(1, 2)

− 1
β2 (β2(1 − β2) + ρ2

H)sC5
0

]
, (30)

FH
B = − α

2π
gW

2 mt
2

mW
2 2(1 − β2 − ρH)

× s
d

dp2 B5
0(1, 2)

∣∣∣∣
p2=mt

2

. (31)

For the unphysical fields χ and φ we find

Fχ
e = gt

a
2 mt

2

mZ
2 2

×
[
2ρz

(
B

3
0(1, 3) − B

1
0(3, 4)

)
+(2ρz + β2)ρzsC

3
0

]
, (32)

Fχ
m = gt

a
2 mt

2

mZ
2

×
[
−1 +

4
s(1 − β2)

(
A0(mZ

2) − A0(mt
2)
)

+
(

1 − 2ρz

β2

)
B

3
0(1, 3)

+
2ρz(1 − 3β2)
β2(1 − β2)

B
1
0(3, 4) − 2

ρ2
z

β2 sC3
0

]
, (33)

Fχ
B =

α

2π
gt

a
2 mt

2

mZ
2 4ρzs

d
dp2 B1

0(3, 4)
∣∣∣∣
p2=mt

2

, (34)

Fφ
e =

gW
2

8
s

mW
2

×
[(

1 − β4 − 4β2(ρw + 2ρb) + 4ρw

)
×
(
B

4
0(1, 3) − B

4
0(1, 2)

)
+16ρb(ρb − ρw)B

4
0(1, 2)

+
1
4
(
1 − β6 − 3β2(1 − β2) − 4β4(ρb + 2 ρw)

+8β2ρb + 16(1 − β2)(ρ2
w − ρ2

b)

+64ρb(ρb − ρw)2

+4(2ρw − ρb)) sC4
0

]
, (35)

Fφ
m =

gW
2

2
s

mW
2

×
[
− 1

4
(1 − β2 + 4ρb)

+
1 − β2 + 4ρb

s(1 − β2)
(
A0(mW

2) − A0(mb
2)
)

+
1

8β2(1 − β2)
(1 − 3β2)

×(1 − β2 + 4ρb)
(
1 − β2 + 4(ρw − ρb)

)
B

4
0(1, 2)

− 1
8β2

(
1 − 4β2 + 3β4 + 4ρw(1 − β2) − 8β2ρb

)
×B

4
0(1, 3)

− 1
32β2

(
1 + β2 − 5β4 + 3β6 + 4(2ρw − ρb)

+64ρb(ρw − ρb)2

+16ρ2
w(1 − β2) − 16ρ2

b(1 − 5β2)

+4β4(2ρw + 7ρb) − 8β2(2ρw + 3ρb)
)
sC4

0

]
, (36)

Fφ
B = − α

16π
gW

2 s

mW
2

(
(1 − β2)2

−4(1 − β2)(2ρb + ρw)

− 16ρb(ρw − ρb)) s
d

dp2 B4
0(1, 2)

∣∣∣∣
p2=mt

2

. (37)

Again only terms proportional to gt
v
2
, gt

a
2 or gW

2 are
present. Let us now discuss the contribution from the box



J.H. Kühn et al.: Electroweak corrections to top-quark pair production in quark–antiquark annihilation 143

diagrams. To the order ααs
2 considered here, we can dis-

tinguish two different contributions.
(1) The (box-type) electroweak correction to the QCD Born
amplitude, interfering with the QCD Born amplitude.
(2) The QCD box diagram interfering with the electroweak
Born amplitude.

In the following we will call the first the electroweak-
box (EW-box), and the second the QCD-box contribution.
For the EW box we obtain

dσEW−box

dz

= σ0
α

π
gq

vgt
v

{
z

[
4
β

B
1
0(1, 3)

− 2(1 − β2)
β(1 − β2z2)

(1 + 2β2 − β2z2)

×
(
B

1
0(1, 4) + B

1
0(3, 4)

)

+
2(1 − β2)

β(1 − β2z2)(1 − ρz)

× (1 + β2 + β2(1 − β2)(1 − z2)

− (2(1 − β2z2) + β4(1 − z2)
)
ρz

+ (1 + 2β2 − β2z2)ρ2
z

)
sC0(1, 3, 4)

]

+
[

2
1 − βz

(1 − 2β2 + β2z2)B
1
0(2, 4)

+
1

(1 − βz)(1 − ρz)2

× [(1 − βz)2
(
2 − β2(1 − z2)

)
−β
(
4(β − z) − β3(1 − z2)2

)
ρz

− (4(1 − β2) − β2(1 + β2 − 2βz)(1 − z2)
)
ρ2

z

+ 2(1 − 2β2 + β2z2)ρ3
z

]
sC1

0 (2, 3, 4)

+
2β2(1 − z2)

(1 − βz)(1 − ρz)2

× (1 − β2 + 2(1 − βz + β2z2)

− (1 + β2 − 2βz)ρz + 2ρ2
z

)
sDd=6,EW1

0

−(z → −z)
]}

+σ0
α

π
gq

agt
a

{
4B

1
0(1, 3)

− 4(1 − β2)
(1 − β2z2)

(
B

1
0(1, 4) + B

1
0(3, 4)

)

+
4(1 − β2)

(1 − β2z2)(1 − ρz)
(
β2z2 − (1 − β2z2)ρz + ρ2

z

)

×sC0(1, 3, 4)

+
[

2
1 − βz

(1 − 2β2 + β2z2)B
1
0(2, 4)

− 2
(1 − βz)(1 − ρz)2

× [(1 − βz)
(
1 − βz − β2(1 − z2)

)
− (3(1 − β2 − βz) + β3z + 2β2z2) ρz

+
(
3(1 − β2) − β2(1 − z2)

− βz(1 − 2β2 + β2z2)
)
ρ2

z

− (1 − 2β2 + β2z2)ρ3
z

]
sC1

0 (2, 3, 4)

+
4β2(1 − z2)

(1 − βz)(1 − ρz)2

× (βz − (1 − βz)ρz + ρ2
z

)
sDd=6,EW1

0

+(z → −z)
]}

− 1
64π

αs
1

N2 βB

× [(1 − βz)C1
0 (1, 2, 4) − (1 + βz)C2

0 (1, 2, 4)
]

+O(ε), (38)

with

B = −8πααs(N2 − 1)
s

s − mZ
2

× ((d − 2 − β2(1 − z2))gq
vgt

v

+βz(d − 2)(d − 3)gq
agt

a

)
. (39)

Note that the contribution dσEW−box is UV-finite, as al-
ready mentioned. This can be easily checked by replacing
the B0 integrals by ∆ and verifying that this contribution
indeed vanishes. Since we are using box integrals in d = 6
dimensions, the IR singularities appear only in the three-
point integrals. In particular, in the above result, only the
last line in (38) is singular. As a consequence only this term
needs to be evaluated in d dimensions. Note that owing
to the structure of the IR singularities in QCD we will
not pick up finite terms of the form ε/ε. They will cancel
with the corresponding terms in the real corrections, as we
will show in the next section, where the real corrections
are discussed.

For the QCD box we find

dσQCD

dz

= σ0
α

π
1

(1 − ρz)
gq

vgt
v

{
z

[
2
β

B
6
0(1, 3)

−2
1 − β2

β(1 − β2z2)
(1 + 2β2 − β2z2)B

1
0(1, 4)
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+
1 − β2

β(1 − β2z2)
(
1 + β2 + β2(1 − β2)(1 − z2)

)

×sCQCD1
0 (1, 3, 4)

]

+
[

1
1 − βz

(1 − 2β2 + β2z2)B
1
0(2, 4)

+
β2(1 − z2)

1 − βz

(
3 − 2βz(1 − βz) − β2) sDd=6,1

0

−(z → −z)
]}

+σ0
α

π
1

(1 − ρz)
gq

agt
a

{
2B

6
0(1, 3)

+
1 + β2z2

1 − β2z2 (1 − β2)
(
sCQCD1

0 (1, 3, 4) − 2B
1
0(1, 4)

)

+
[

1 + βz

1 − βz
β(z − β)B

1
0(2, 4) +

2β3(1 − z2)
1 − βz

zsDd=6,1
0

+(z → −z)
]}

− 1
64π

αs
1

N2 βB

× [(1 − βz)C1
0 (1, 2, 4) − (1 + βz)C2

0 (1, 2, 4)
]

+O(ε). (40)

Combining the two results in (38) and (40), the IR-divergent
part is thus given by

− αs

32π
1

N2 βB
[
(1 − βz)C1

0 (1, 2, 4)

−(1 + βz)C2
0 (1, 2, 4)

]
= − αs

16π
1

N2

β

s
B
[
sqtC

1
0 (1, 2, 4) − sqt̄C

2
0 (1, 2, 4)

]
. (41)

In particular, we obtain

− αs

16π
1

N2

β

s
B
[
sqtC

1
0 (1, 2, 4) − sqt̄C

2
0 (1, 2, 4)

]
=

αs

32π
1

N2

β

s
B(4π)εΓ (1 + ε)

×
[

2
ε

ln
(

sqt̄

sqt

)
+ g(sqt) − g(sqt̄)

]
, (42)

with sij = 2ki · kj , where we have used

C1
0 (1, 2, 4)

=
1

iπ2

∫
dd	

1
	2(	 + kq)2((	 + kt)2 − mt

2)

= − 1
2

(4π)εΓ (1 + ε)
1

sqt

×
(

1
ε2 +

1
ε

ln
(

mt
2µ2

sqt
2

)
+ g(sqt)

)
+ O(ε), (43)

with

g(sqt) = − ln
(

sqt

µ2

)
ln
(

mt
2

sqt

)
+

1
2

ln
(

sqt

µ2

)2

−2Li2

(
sqt − mt

2

sqt

)
− 1

2
ln
(

mt
2

sqt

)2

. (44)

We note that the divergent three-point integral

1
iπ2

∫
1

	2(	 + kq)2((	 + kq + kq̄)2 − mZ
2)

, (45)

which could in principle also appear, cancels in the calcu-
lation.

3 Real corrections

As mentioned in the previous section the contribution from
the box diagrams is IR-divergent. To render the correc-
tions to the total cross section finite we need to include
the real corrections at the same order. A few sample di-
agrams are shown in Fig. 3. The diagram containing the
triple gluon vertex (see Fig. 4) does not contribute because
of the colour structure. The calculation of the real correc-
tions is straightforward. The phase-space integration over
the regions where the emitted gluon is soft will produce
the IR singular contribution needed to cancel the corre-
sponding singularities in the virtual corrections. Note that
owing to the colour structure no collinear singularities ap-
pear, because the interference between the two diagrams,
where the gluon is emitted from the initial state, vanishes.
As a consequence no factorisation of initial-state singu-
larities is required. To extract the IR divergences, we use
the so-called subtraction method [21–23]. The basic idea
of the subtraction method is to add and subtract a term
in such a way that the singularities appearing in the real

Z Z

Fig. 3. Sample diagrams for the real corrections

Fig. 4. Amplitude containing
the triple gluon vertex. The di-
agram does not contribute here
because of the colour structure
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corrections are matched point-wise and that the term is
simple enough to be integrated analytically in d dimen-
sions over the full phase space. Given that the same term
is added and subtracted, this procedure does not change
the result. The analytically integrated term is combined
with the virtual corrections, while the unintegrated term
is combined with the real corrections. Given that the term
combined with the real corrections match point-wise the
singularities of the squared matrix element, the integration
can be done numerically in 4 dimensions. Because of the
universal structure of soft and mass singularities in QCD,
the subtraction terms can be constructed in a very gen-
eral way. For further details on the subtraction method,
we refer to [21, 23]. Here we just reproduce the necessary
equations required for the case at hand.

Using the subtraction method the NLO contribution
to the cross section can be symbolically written as [21,23]

σNLO(kq, kq̄) = σV(kq, kq̄) + σR(kq, kq̄)

=
∫

3


[dσR(kq, kq̄, kt, kt̄, kg)]ε=0

−

 ∑

dipoles

(dσLO ⊗ dVdipole) (kq, kq̄, kt, kt̄, kg)




ε=0




+
∫

2
[dσV(kq, kq̄, kt, kt̄)

+ dσLO(kq, kq̄, kt, kt̄) ⊗ (Iq + Iq̄)]ε=0

+
∫

dx

∫
2
dσLO(xkq, kq̄, kt, kt̄) ⊗ (Kq + Pq)

+
∫

dx

∫
2
dσLO(kq, xkq̄, kt, kt̄) ⊗ (Kq̄ + Pq̄). (46)

Here dσR, dσV denote the real and virtual corrections to
the cross section. In particular we have

dσV = dσIn. + dσFin. + dσEW−box + dσQCD−box. (47)

In (46) we label the integral symbols with an index 2 or 3
to indicate that the phase-space integral runs over a 2- or
3-particle final state. The terms of the form

dσLO ⊗ F (48)

with F = P,K, dVdipole deserve some explanation. In gen-
eral the symbol “⊗” introduces spin as well as colour cor-
relation between the operator F and the leading-order am-
plitude, which is a vector in colour space. Note that for
the case studied here, where the gluon is always emitted
from a quark line, no spin correlation appears. For the
contribution from the integrated dipoles we obtain

dσLO(kq, kq̄, kt, kt̄) ⊗ I

=
1

32π
1

4N2

β

s
〈qq̄ → tt̄ |Iq + Iq̄| qq̄ → tt̄ 〉ααs

= − αs

32π2

1
4N2

β

s

(4π)ε

Γ (1 − ε)

×
{

2
ε

ln
(

sqt̄

sqt

)
+ H(sqt) − H(sqt̄)

}

× 〈qq̄ → tt̄ |TqTt| qq̄ → tt̄ 〉 , (49)

with

H(sqt)

= − 1
2

ln
(

mt
2

sqt

)2

− ln
(

mt
2

sqt

)
ln
(

sqt

Q2(sqt, mt)

)

− ln
(

mt
2

Q2(sqt, mt)

)
ln
(

sqt

Q2(sqt, mt)

)

+ ln
(

µ2

sqt

)
ln
(

mt
2

sqt

)
+

1
2

ln
(

µ2

sqt

)2

+
6
2

ln
(

µ2

sqt

)

+ ln
(

sqt

Q2(sqt, mt)

)
− 2Li2

(
sqt

Q2(sqt, mt)

)

− mt
2

sqt
ln
(

mt
2

Q2(sqt, mt)

)

−3 ln
(

Q(sqt, mt) − mt

Q(sqt, mt)

)
− 3mt

Q(sqt, mt) + mt

+
π2

6
. (50)

Following [21] we used the bra-ket notation to represent
the leading-order amplitude as vector in colour space:

|qq̄ → tt̄ 〉 .

In the derivation we used the following result for I:

Iq(ε, µ2; {}, pa) = − αs

2π
(4π)ε

Γ (1 − ε)

×
{

1
CF

TtTq

[
CF

(
µ2

sqt

)ε(
VQ(sqt, mt, 0; ε, κ) − π2

3

)

+ ΓQ(µ, mt; ε) + γq ln
(

µ2

sqt

)
+ γq + Kq

]

+
1

CF
TtTq

[
CF

(
µ2

sqt

)ε(
Vq(sqt, 0, mt; ε, 2/3) − π2

3

)

+
γq

ε
+ γq ln

(
µ2

sqt

)
+ γq + Kq

]

+ (t ↔ t̄)} , (51)

which can be easily obtained from [23]. The definitions of
VQ, Vq, ΓQ, γq, Kq can be found in [23]. The result for Iq̄

can be obtained from the above result by the replacement
(q ↔ q̄). The Tt, Tq appearing in the above equation are
colour-charge operators, which act on the leading-order
amplitudes that are vectors in colour space. The calculation
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of this specific contribution was further simplified by noting
that, because of the simple colour structure of the process
at hand, the following relation holds:

〈qq̄ → tt̄ |TqTt| qq̄ → tt̄ 〉
= − 〈qq̄ → tt̄ |TqTt̄| qq̄ → tt̄ 〉
= − 〈qq̄ → tt̄ |Tq̄Tt| qq̄ → tt̄ 〉
= 〈qq̄ → tt̄ |Tq̄Tt̄| qq̄ → tt̄ 〉 . (52)

The square of the colour-correlated tree amplitudes is
given by

〈qq̄ → tt̄ |TqTt| qq̄ → tt̄ 〉
= −32π2ααs(N2 − 1)

s

s − mZ
2

× ((d − 2 − β2(1 − z2))gq
vgt

v

+βz(d − 2)(d − 3)gq
agt

a

)
= 4πB, (53)

with B as defined in (39). Comparing (42) with (49) and
(53), it is easy to see that when combining the real and
virtual corrections the IR singularities indeed cancel. In
addition, as promised already in the previous section, we see
that indeed no ε/ε terms appear, which must be due to the
“d-dimensional” factorisation of the infrared singularities.
The K and P operators can be calculated along the same
lines as described above for the I operator. In particular
we obtain

Kq = − αs

2π
TtTq{K(x, sqt, mt) − K(x, sqt̄, mt)}, (54)

with

K(x, sqt, mt)

=
[
JgQ

(
x,

mt
2

sqt

)]
+

+2
[

1
1 − x

]
+

ln
(

(2 − x)sqt

(2 − x)sqt + mt
2

)

+δ(1 − x)

×
[

mt
2

sqt
ln
(

mt
2

sqt + mt
2

)
+

1
2

mt
2

sqt + mt
2

+
3
2

2mt√
sqt + mt

2 + mt

+
3
2

ln

(
sqt − 2mt

√
sqt + mt

2 + 2mt
2

sqt

)]

+P qq
reg(x) ln

(
(1 − x)sqt

(1 − x)sqt + mt
2

)
, (55)

where the regular part P qq
reg of the evolution kernel P qq(x)

is given by
P qq

reg(x) = −(1 + x), (56)

and the Plus prescription defines distributions in the usual
way, through

[F (z)]+ = lim
η→0

{
Θ(1 − z − η)F (z)

−δ(1 − z − η)
∫ 1−η

0
F (y)dy

}
. (57)

The function [JgQ]+ is given in (5.58) of [23], and we re-
produce it here explicitly:[

JgQ(x, y2)
]
+

=
[

1 − x

2(1 − x + y2)2
− 2

1 − x

(
1 + ln(1 − x + y2)

)]
+

+
[

2
2 − x

]
+

ln(2 + y2 − x). (58)

For the P operator we find

Pq =
αs

2π
P qq(x)TtTq ln

(
sqt̄

sqt

)
, (59)

with

P qq(x) = P qq
reg(x) +

[
2

1 − x

]
+

+
3
2

δ(1 − x). (60)

Note that in deriving the above relations we used again
relation (52) to simplify the colour-charge algebra. The
corresponding results for the antiquark give the same con-
tribution for the K and P operators. Note that when cal-
culating∫

dx

∫
2
dσLO(xkq, kq̄, kt, kt̄) ⊗ (Kq + Pq), (61)

one has to replace kq by xkq in the calculation of the colour-
correlated matrix element (53) as well as in the phase-space
measure. For details concerning the evaluation of the Plus
prescriptions we refer to [23]. A remark might be in order
concerning the appearance of theK andP operators. To the
order we are working here, there is no contribution from the
factorisation of initial-state singularities. At first sight the
fact that the evolution kernel P qq appears might thus look a
bit strange. The reason is just that a corresponding term is
included in the dipole contribution, which is combined with
the real corrections. If we apply the subtraction method
as it is described in [23], we thus have to consider the
contributions from the K and P operators as shown above.
In principle one could think of changing slightly the form
of the subtraction terms; but in that case the analytic
integration over the subtraction terms would also need to
be redone. Let us close this section with some remarks
about the subtraction term

(dσLO ⊗ dVdipole) (kq, kq̄, kt, kt̄, kg) (62)

in (46), which is combined with the real corrections. This
contribution is obtained as a sum over individual “dipoles”
Da

ij , Dij
a :
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(dσLO ⊗ dVdipole)

=
1
2s

1
4N2

∫
dR3(kt, kt̄, kg) (63)

×
(
Dq

tg + Dq̄
tg + Dq

t̄g + Dq̄
t̄g + Dqg

t + Dq̄g
t + Dqg

t̄ + Dq̄g
t̄

)
.

Here i and j are the unresolved partons, while a plays the
rôle of a spectator. The explicit expressions for the 8 dipoles
can be easily obtained from [23]. For example, we get

Dq
tg = − 1

(kt + kg)2 − mt
2

1
xtg,q

V q
tg

×
〈

q(k̃q)q̄(kq̄) → t(k̃t)t̄(kt̄)

×
∣∣∣∣Tq · Tt

∣∣∣∣q(k̃q)q̄(kq̄) → t(k̃t)t̄(kt̄)
〉

= − 1
(kt + kg)2 − mt

2

1
xtg,q

V q
tg B

∣∣∣∣
kq=k̃q,kt=k̃t

,(64)

where

xtg,q =
kq · kt + kq · kg − kt · kg

kq · kt + kq · kg
, (65)

k̃q
µ

= xtg,qk
µ
q , k̃t

µ
= kµ

t + kµ
g − (1 − xtg,q)kµ

q , (66)

and

V q
tg = 8παs

{
2

2 − xtg,q − z̃t
− 1 − z̃t − mt

2

kt · kg

}
. (67)

The four-momentum of parton i is denoted by ki. The
momentum fraction z̃t is defined by

z̃t =
kq · kt

kq · kt + kq · kg
. (68)

For the remaining dipoles the obtained results are similar.
The numerical implementation of the subtractions

terms shown above is straightforward. So far we have only
discussed the calculation of the total cross section. In princi-
ple also more exclusive quantities can be calculated without
any significant change. In the next section we will discuss
our numerical results for the cross section. More exclusive
quantities will be discussed elsewhere.

4 Numerical results

In the following we will discuss numerical results for the
weak corrections to the total cross section. If not stated
otherwise, we used the following values for the masses:

mZ = 91.1876 GeV, mW = 80.425 GeV,

mH = 120 GeV,

mb = 4.82 GeV, mt = 178.0 GeV,

and

α(2mt) =
1

126.3
, αs = 0.1, sW

2 = 0.231

for the couplings. Using mZ and mW as input parameters,
the weak mixing angle can be in principle calculated within
the theory. However, since our calculation is leading order
in the electroweak coupling, we expect that the numerical
choice for sW as given within the MS-scheme, will give
results closer to the actual values. Before showing our final
results for the cross section, let us first discuss several checks
we performed. The analytic expressions for the vertex cor-
rections to the initial vertex can be found in the literature.
We compared with the results given in [25, 26] and found
complete agreement. For the corrections to the final vertex,
no such compact expressions can be found in the literature.
Using the same input parameters as in [13] we compared
with plots shown in [13] and found agreement. Furthermore
a precise numerical comparison with Bernreuther, Fücker
and Si [29] who also recently finished an independent calcu-
lation of the weak corrections, lead to complete agreement.
For the case of the box diagrams it is possible to compare
the contribution of the QCD boxes with an analytic result
available in the literature [24]. In [24] the corrections to
the total cross section were calculated using the optical
theorem. In our calculation we just need to split the real
corrections into the contribution belonging to the EW box
and that belonging to the QCD box. As far as the matrix
elements for the real corrections are concerned, the contri-
bution where the momentum flow in the Z-propagator is
the total centre-of-mass energy belongs to the QCD box.
On the other hand, the contribution where the momentum
of the gluon propagator is equal to the total centre-of-
mass energy belongs to the EW-box contribution. Sample
diagrams for both contributions are shown Fig. 5. For the
subtraction terms there is no such difference, they have to
be distributed equally. This splitting might sound some-
what artificial, but it allows a direct comparison with [24].
In Fig. 6 we show the analytic result from [24] as a line. The
crosses are obtained from the numerical integration of our
results for the QCD box over the full phase space. We find
complete agreement taking the numerical uncertainties of
the phase-space integration into account. This is a highly
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Fig. 5. Schematic representation of real corrections to the
QCD-box contribution a and the EW-box contribution b
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Fig. 6. Comparison with results available in the literature [24]

non-trivial test, because the entire contribution from the
subtraction method is checked. In addition we compared
again with the results by Bernreuther, Fücker and Si and
found perfect agreement [29].

Note that for the box contributions only the axial-vector
part (proportional to gt

agq
a) contributes to the total cross

section thanks to theFurry theorem.We included the vector
part (proportional to gt

vgq
v) in our calculation as well, be-

cause our aim is to allow also the calculation of differential
quantities (with or without cuts) where these terms might
contribute. We checked that for the total cross section the
vector part indeed cancels in the numerical evaluation of
the phase-space integrals – providing a further check of our
numerical implementation. Terms proportional to gt

vgq
a or

gt
agq

v contribute to parity violating observables only. They
are relevant for spin dependent quantities and have not
been included in the present analyses. An important con-
sequence of theFurry theorem is that the result for incoming
down-type quarks can be obtained directly from the one for
up-type quarks as far as the boxes are concerned. There is
just a relative sign between the two contributions, because
of the sign difference in the weak isospin. At the hadron
level the contribution of the box diagrams is thus directly
proportional to the difference of the parton distribution
functions between up- and down-type quarks. This leads
to a suppression of the contribution of the box diagrams.

Let us now discuss the numerical results for the cross
section. In Fig. 7 we show the separate contributions as
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Fig. 7.Different contributions to the electroweak corrections for
incoming up-quarks: initial vertices (long-dashed), final vertices
(dotted), EW box (dash-dotted), QCD box (dashed). The sum
is shown as a full line
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Fig. 8. Relative change of the cross section from corrections
to the final vertex for different Higgs masses mH = 120 GeV
(full line), mH = 180 GeV (dashed), mH = 240 GeV (dotted),
mH = 1000 GeV (dashed-dotted)

well as the sum for the partonic cross section for incoming
up-quarks as a function of

η =
s

4mt
2 − 1. (69)

For a Higgs mass of mH = 120 GeV used in Fig. 7 the
dominant contribution is given by the vertex corrections.
It can also be seen that the contribution from EW boxes is
much larger than the contribution from the QCD boxes. We
have checked that the purely weak contributions, of order
α2 are completely negligible. At hadron colliders the parton
subenergies may reach the order of TeV and beyond. In this
region the suppression of the cross section by large Sudakov
logarithms starts to become important, similarly to the
situation for purely electroweak processes (see e.g. [15,16]).
In this region the weak corrections are of the order of
10% and more. Furthermore, the vertex corrections depend
strongly on the Higgs mass as shown in Fig. 8, and this
dependence is particularly pronounced in the threshold
region. (For a related discussion see [27].) In particular for
small mH and small velocity β one is still sensitive to the
attractive Yukawa force. For large mH and small β, on
the other hand, the Higgs contribution vanishes. In Figs. 9
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Fig. 9. Dependence of the qq̄ induced hadronic cross section
on the top mass mt (LHC) for 3 different Higgs masses (mH =
120 solid line, mH = 200 dashed line, mH = 1000 dashed-
dotted line)
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Fig. 10. Dependence of the qq̄ induced hadronic cross section
on the top mass mt (Tevatron) for 3 different Higgs masses
(mH = 120 solid line, mH = 200 dashed line, mH = 1000
dashed-dotted line)

and 10 the total contribution of the weak corrections to
the quark–antiquark induced part of the hadronic cross
section is shown, which should be compared to the QCD
corrected total cross section of 5.75 pb [11] and 833 pb [28]
for 1.96 TeV and 14 TeV respectively. As far as the total
cross section is concerned, the effects are evidently very
small. Electroweak corrections are, however, important for
differential distributions, which are enhanced in the region
of large parton subenergies [30].

5 Conclusion

In this article we have evaluated the complete elec-
troweak corrections to top-quark pair production in quark–
antiquark annihilation including terms from the interfer-
ence between QCD and electroweak amplitudes. In par-
ticular we present short analytical results, which will be
useful for further investigations. As a first application we
have studied the impact of the weak corrections on the
total cross section. We confirm the findings of [13] that the
correction to the total cross section is negligible.
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M. Fücker and Z.-G. Si for useful discussions and for a detailed
comparison of results prior to publication.

Appendix A: List of used integrals

Using the definitions

B0(p2
1, m1

2, m2
2)

=
1

iπ2

∫
dd	

(2πµ)2ε

(	2 − m1
2 + iε)((	 + p1)2 − m2

2 + iε)

C0(p2
1, p

2
2, p1 · p2, m1

2, m2
2, m3

2)

=
1

iπ2

∫
dd	

(2πµ)2ε

(	2 − m1
2 + iε)((	 + p1)2 − m2

2 + iε)

× 1
((	 + p1 + p2)2 − m3

2 + iε)

the integrals used in Sect. 2 are

B1
0(1, 3) = B0(s, 0, mZ

2), (A.1)

B1
0(1, 4) = B0(mt

2, 0, mt
2), (A.2)

B1
0(3, 4) = B0(mt

2, mZ
2, mt

2), (A.3)

B1
0(2, 4) = B0

(
− s

2
(1 − βz) + mt

2, 0, mt
2
)

, (A.4)

B2
0(2, 4) = B0

(
− s

2
(1 + βz) + mt

2, 0, mt
2
)

, (A.5)

B3
0(1, 3) = B0(s, mt

2, mt
2), (A.6)

B4
0(1, 2) = B0(mt

2, mb
2, mW

2), (A.7)

B4
0(1, 3) = B0(s, mb

2, mb
2), (A.8)

B5
0(1, 2) = B0(mt

2, mt
2, mH

2), (A.9)

B6
0(1, 3) = B0(s, 0, 0), (A.10)

C0(1, 3, 4) = C0

(
s, mt

2, − s

2
, 0, mZ

2, mt
2
)

, (A.11)

C1
0 (1, 2, 4) = C0

(
0, − s

2
(1 − βz) + mt

2,

s

4
(1 − βz), 0, 0, mt

2
)

, (A.12)

C2
0 (1, 2, 4) = C0

(
0, − s

2
(1 + βz) + mt

2,

s

4
(1 + βz), 0, 0, mt

2
)

, (A.13)

C1
0 (2, 3, 4) = C0

(
0, mt

2, − s

4
(1 − βz), 0, mZ

2, mt
2
)

,

(A.14)

C2
0 (2, 3, 4) = C0

(
0, mt

2, − s

4
(1 + βz), 0, mZ

2, mt
2
)

,

(A.15)

CQCD1
0 (1, 3, 4) = C0

(
s, mt

2, − s

2
, 0, 0, mt

2
)

, (A.16)

C3
0 = C0

(
mt

2, mt
2,

s

2
− mt

2, mt
2, mZ

2, mt
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2
)
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2, mH

2, mt
2
)
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s

2
, − s

4
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4
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2, mt
2
)

, (A.20)
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(
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2,
s

2
, − s

4
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− s

4
(1 − βz), 0, 0, mZ

2, mt
2
)

, (A.21)
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(
0, 0, mt

2,
s

2
, − s

4
(1 − βz),

− s

4
(1 + βz), 0, 0, 0, mt

2
)

, (A.22)

Dd=6,2
0 = D6
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(
0, 0, mt

2,
s

2
, − s

4
(1 + βz),

− s

4
(1 − βz), 0, 0, 0, mt

2
)

. (A.23)
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30. J.H. Kühn, A. Scharf, P. Uwer, work in preparation


